PARTITIONS AND P-LIKE IDEALS

Pavol Jozef Šafárik University in Košice, Institute of Mathematics

Adam Marton 1. February 2022 joint work with Jaroslav Šupina

Winter School, Hejnice

- A family $\mathcal{I} \subseteq \mathcal{P}(M)$ of subsets of a given (usually countable) set M is called an **ideal on** M, if
- $[M]^{<\omega} \subseteq \mathcal{I}, M \notin \mathcal{I},$
- $\mathcal I$ is closed under taking subsets and finite unions.

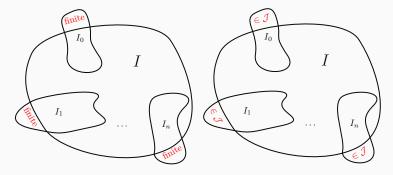
- A family $\mathcal{I} \subseteq \mathcal{P}(M)$ of subsets of a given (usually countable) set M is called an **ideal on** M, if
- $[M]^{<\omega} \subseteq \mathcal{I}, M \notin \mathcal{I},$
- $\mathcal I$ is closed under taking subsets and finite unions.
- We denote an ideal of all finite subsets of M by Fin.

• a **P-ideal**, if for each countable family $\{I_n : n \in \omega\} \subseteq \mathcal{I}$ there is an $I \in \mathcal{I}$ such that $I_n \subseteq^* I$ for every $n \in \omega$ (where $I_n \subseteq^* I$ iff $I_n \setminus I$ is finite).

- a **P-ideal**, if for each countable family $\{I_n : n \in \omega\} \subseteq \mathcal{I}$ there is an $I \in \mathcal{I}$ such that $I_n \subseteq^* I$ for every $n \in \omega$ (where $I_n \subseteq^* I$ iff $I_n \setminus I$ is finite).
- a $\mathbf{P}(\mathcal{J})$ -ideal, if for each countable family $\{I_n : n \in \omega\} \subseteq \mathcal{I}$ there is an $I \in \mathcal{I}$ such that $I_n \subseteq^{\mathcal{J}} I$ for every $n \in \omega$ (where $I_n \subseteq^{\mathcal{J}} I$ iff $I_n \setminus I \in \mathcal{J}$).

- a **P-ideal**, if for each countable family $\{I_n : n \in \omega\} \subseteq \mathcal{I}$ there is an $I \in \mathcal{I}$ such that $I_n \subseteq^* I$ for every $n \in \omega$ (where $I_n \subseteq^* I$ iff $I_n \setminus I$ is finite).
- a $\mathbf{P}(\mathcal{J})$ -ideal, if for each countable family $\{I_n : n \in \omega\} \subseteq \mathcal{I}$ there is an $I \in \mathcal{I}$ such that $I_n \subseteq^{\mathcal{J}} I$ for every $n \in \omega$ (where $I_n \subseteq^{\mathcal{J}} I$ iff $I_n \setminus I \in \mathcal{J}$).
 - P-ideal is just a P(Fin)-ideal

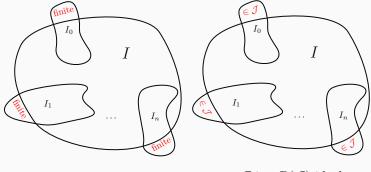
Central Notion



 ${\mathcal I}$ is a P-ideal

 ${\mathcal I}$ is a ${\rm P}({\mathcal J})\text{-}{\rm ideal}$

Central Notion



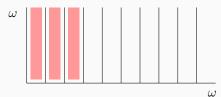
 ${\mathcal I}$ is a P-ideal

 ${\mathcal I}$ is a ${\rm P}({\mathcal J})\text{-ideal}$

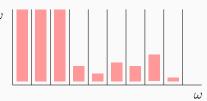
• note that \mathcal{I} is a $\mathcal{P}(\mathcal{J})$ -ideal if and only if $\mathfrak{b}(\mathcal{I}, \subseteq^{\mathcal{J}}) \geq \omega_1$

$$\begin{array}{c} A \in \operatorname{Fin} \times \emptyset \\ \updownarrow \\ \{n : \{m : (n,m) \in A\} \neq \emptyset\} \in \operatorname{Fin} \end{array}$$

Fubini product $\operatorname{Fin}\times \emptyset$



 $\begin{array}{c} A \in \operatorname{Fin} \times \operatorname{Fin} \qquad \omega \\ \uparrow \\ \{n: \ \{m: \ (n,m) \in A\} \not\in \operatorname{Fin}\} \in \operatorname{Fin} \\ \operatorname{Fubini} \text{ product } \operatorname{Fin} \times \operatorname{Fin} \end{array}$



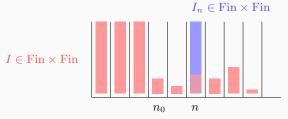
$\mathbf{Fin}\times\mathbf{Fin}$

• $\underline{is not}$ a P-ideal

$\operatorname{Fin} \times \operatorname{Fin}$

• <u>is not</u> a P-ideal

consider the sequence of columns $I_n = \{n\} \times \omega$

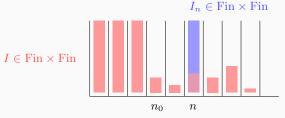


for any $I \in Fin \times Fin$ there is n_0 such that $I \cap I_n$ is finite for $n > n_0$

$\operatorname{Fin} \times \operatorname{Fin}$

• <u>is not</u> a P-ideal

consider the sequence of columns $I_n = \{n\} \times \omega$



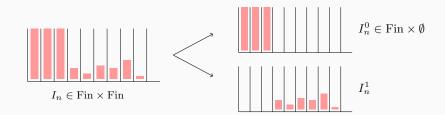
for any $I \in Fin \times Fin$ there is n_0 such that $I \cap I_n$ is finite for $n > n_0$

 $\mathbf{Fin}\times\mathbf{Fin}$

• is a $P(Fin \times \emptyset)$ -ideal

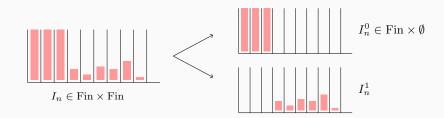
 $\mathbf{Fin}\times\mathbf{Fin}$

• is a $P(Fin \times \emptyset)$ -ideal



 $\operatorname{Fin} \times \operatorname{Fin}$

• is a $P(Fin \times \emptyset)$ -ideal



 I_n^1 can be covered by an area below graph of function $f_n \in {}^\omega \omega$ for each n

 \rightarrow take an area below a function that \leq^* -dominates f_n for every n

Theorem (M. Mačaj – M. Sleziak [4], 2010)

Let X be a non-discrete first countable topological space and let \mathcal{I}, \mathcal{J} be ideals on ω . The following are equivalent:

- 1) \mathcal{I} is a $P(\mathcal{J})$ -ideal.
- In the Boolean algebra P(ω)/J the ideal I corresponds to a σ-directed subset¹.
- 3) For any sequence $\langle x_n : n \in \omega \rangle$ in X, if $\langle x_n : n \in \omega \rangle$ is \mathcal{I} -convergent to x then $\langle x_n : n \in \omega \rangle$ is $\mathcal{I}^{\mathcal{I}}$ -convergent to x.

¹i.e., it contains an upper bound of each countable subset.

Theorem (R. Filipów – M. Staniszewski [1], 2014)

Let X be a non-empty set and \mathcal{I}, \mathcal{J} be ideals on ω . The following are equivalent:

- 1) \mathcal{I} is a $P(\mathcal{J})$ -ideal.
- 2) For any sequence $\langle f_n : n \in \omega \rangle$ of real-valued functions on X, if $\langle f_n : n \in \omega \rangle$ is \mathcal{I} -uniformly convergent to f then $\langle f_n : n \in \omega \rangle$ is $(\mathcal{I}, \mathcal{J})$ -equally convergent to f.

Lemma (R. Filipów – M. Staniszewski)

a) \mathcal{I} is a $P(\mathcal{I})$ -ideal for every \mathcal{I} .

- b) If \mathcal{I} is $P(\mathcal{J})$ and $\mathcal{J}' \supseteq \mathcal{J}$, then \mathcal{I} is $P(\mathcal{J}')$.
- c) If \mathcal{I}, \mathcal{J} are maximal then \mathcal{I} is $P(\mathcal{J})$ and \mathcal{J} is $P(\mathcal{I})$.

Lemma (R. Filipów – M. Staniszewski)

- a) \mathcal{I} is a $P(\mathcal{I})$ -ideal for every \mathcal{I} .
- **b)** If \mathcal{I} is $P(\mathcal{J})$ and $\mathcal{J}' \supseteq \mathcal{J}$, then \mathcal{I} is $P(\mathcal{J}')$.
- c) If \mathcal{I}, \mathcal{J} are maximal then \mathcal{I} is $P(\mathcal{J})$ and \mathcal{J} is $P(\mathcal{I})$.

• In particular, P-ideals are $P(\mathcal{J})$ -ideals for every \mathcal{J} .

Proposition

If \mathcal{I}_m is a maximal ideal on M, then \mathcal{J} is a $P(\mathcal{I}_m)$ -ideal for every ideal \mathcal{J} on M.

Proposition

If \mathcal{I}_m is a maximal ideal on M, then \mathcal{J} is a $P(\mathcal{I}_m)$ -ideal for every ideal \mathcal{J} on M.

There exist tall non- $P(\mathcal{J})$ -ideals for a broad class of ideals \mathcal{J} .

Proposition

If \mathcal{J} is ideal on a countable set M such that there is $\mathcal{X} = \{X_n : n \in \omega\} \subseteq \mathcal{J}^+$ of pairwise disjoint sets, then there is a tall ideal \mathcal{I} such that \mathcal{I} is not a $P(\mathcal{J})$ -ideal.

Proposition

If \mathcal{I}_m is a maximal ideal on M, then \mathcal{J} is a $P(\mathcal{I}_m)$ -ideal for every ideal \mathcal{J} on M.

There exist tall non- $P(\mathcal{J})$ -ideals for a broad class of ideals \mathcal{J} .

Proposition

If \mathcal{J} is ideal on a countable set M such that there is $\mathcal{X} = \{X_n : n \in \omega\} \subseteq \mathcal{J}^+$ of pairwise disjoint sets, then there is a tall ideal \mathcal{I} such that \mathcal{I} is not a $P(\mathcal{J})$ -ideal.

• this includes non-tall ideals, ideals generated by MAD families, meager ideals, asymptotic density zero ideal, van der Waerden ideal etc.

$P(\mathcal{J})$	$\mathcal{J} = \operatorname{Fin}$	$\mathcal{J}=\mathrm{Fin}\times \emptyset$	$\mathcal{J}=\mathrm{Fin}\times\mathrm{Fin}$
Fin	1	\checkmark	✓
$\operatorname{Fin} \times \emptyset$	×	\checkmark	1
$\operatorname{Fin} \times \operatorname{Fin}$	×	\checkmark	1

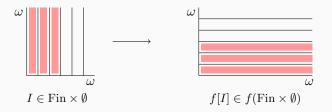
$P(\mathcal{J})$	$\mathcal{J} = \operatorname{Fin}$	$\mathcal{J}=\mathrm{Fin}\times \emptyset$	$\mathcal{J}=\mathrm{Fin}\times\mathrm{Fin}$
Fin	1	\checkmark	✓
$\operatorname{Fin} \times \emptyset$	×	\checkmark	\checkmark
$\operatorname{Fin} \times \operatorname{Fin}$	×	\checkmark	1

What about isomorphic copies of these ideals?

$P(\mathcal{J})$	$\mathcal{J} = \operatorname{Fin}$	$\mathcal{J}=\mathrm{Fin}\times \emptyset$	$\mathcal{J}=\mathrm{Fin}\times\mathrm{Fin}$
Fin	1	\checkmark	✓
$\operatorname{Fin} \times \emptyset$	×	\checkmark	\checkmark
$\operatorname{Fin} \times \operatorname{Fin}$	×	\checkmark	1

What about isomorphic copies of these ideals?

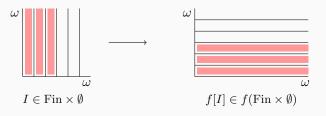
Consider e.g. a bijection $f: \omega \times \omega \to \omega \times \omega$ defined by f(n,m) = (m,n) and $f(\operatorname{Fin} \times \emptyset) = \{f[I] : I \in \operatorname{Fin} \times \emptyset\}.$



$P(\mathcal{J})$	$\mathcal{J} = \operatorname{Fin}$	$\mathcal{J}=\mathrm{Fin}\times \emptyset$	$\mathcal{J}=\mathrm{Fin}\times\mathrm{Fin}$
Fin	1	\checkmark	✓
$\operatorname{Fin} \times \emptyset$	×	\checkmark	\checkmark
$\operatorname{Fin} \times \operatorname{Fin}$	×	\checkmark	1

What about isomorphic copies of these ideals?

Consider e.g. a bijection $f: \omega \times \omega \to \omega \times \omega$ defined by f(n,m) = (m,n) and $f(\operatorname{Fin} \times \emptyset) = \{f[I] : I \in \operatorname{Fin} \times \emptyset\}.$



 $f(\operatorname{Fin} \times \emptyset)$ is just an ideal generated by $\mathcal{A} = \{\omega \times \{n\} : n \in \omega\}$

Observation: Every isomorphic copy of the ideals Fin, Fin $\times \emptyset$, Fin \times Fin can be expressed solely in terms of infinite partitions of $\omega \times \omega$ into infinite sets.

Observation: Every isomorphic copy of the ideals Fin, Fin $\times \emptyset$, Fin \times Fin can be expressed solely in terms of infinite partitions of $\omega \times \omega$ into infinite sets.

 \rightarrow we denote by $(\text{Fin} \times \emptyset)(\mathcal{A}), (\text{Fin} \times \text{Fin})(\mathcal{A}), \dots$ isomorphic copies of $\text{Fin} \times \emptyset, \text{Fin} \times \text{Fin}, \dots$ determined by an infinite partition \mathcal{A} into infinite sets.

Observation: Every isomorphic copy of the ideals Fin, Fin $\times \emptyset$, Fin \times Fin can be expressed solely in terms of infinite partitions of $\omega \times \omega$ into infinite sets.

 \rightarrow we denote by $(\text{Fin} \times \emptyset)(\mathcal{A}), (\text{Fin} \times \text{Fin})(\mathcal{A}), \dots$ isomorphic copies of $\text{Fin} \times \emptyset, \text{Fin} \times \text{Fin}, \dots$ determined by an infinite partition \mathcal{A} into infinite sets.

E.g. let $\mathcal{A} = \{\omega \times \{n\} : n \in \omega\}$ ω $I \in (Fin \times \emptyset)(\mathcal{A})$

Relations \subseteq^{\restriction} and \bot

$P(\mathcal{J})$	$\mathcal{J} = \operatorname{Fin}$	$\mathcal{J}=\mathrm{Fin}\times \emptyset$	$\mathcal{J} = \mathrm{Fin} \times \mathrm{Fin}$
Fin	?	?	?
$(\operatorname{Fin} \times \emptyset)(\mathcal{A})$?	?	?
$(\operatorname{Fin} \times \operatorname{Fin})(\mathcal{A})$?	?	?

$P(\mathcal{J})$	$\mathcal{J} = \operatorname{Fin}$	$\mathcal{J}=\mathrm{Fin}\times \emptyset$	$\mathcal{J} = \mathrm{Fin} \times \mathrm{Fin}$
Fin	?	?	?
$(\operatorname{Fin} \times \emptyset)(\mathcal{A})$?	?	?
$(\operatorname{Fin} \times \operatorname{Fin})(\mathcal{A})$?	?	?

Are there some general rules describing the relationships?

$P(\mathcal{J})$	$\mathcal{J} = \operatorname{Fin}$	$\mathcal{J}=\mathrm{Fin}\times \emptyset$	$\mathcal{J}=\mathrm{Fin}\times\mathrm{Fin}$
Fin	?	?	?
$(\operatorname{Fin} \times \emptyset)(\mathcal{A})$?	?	?
$(\operatorname{Fin} \times \operatorname{Fin})(\mathcal{A})$?	?	?

Are there some general rules describing the relationships?

Denote by $\mathcal{I} \subseteq^{\uparrow} \mathcal{J}$ the condition $(\exists E \in \mathcal{I}^*) \mathcal{I} \upharpoonright E \subseteq \mathcal{J}$, where $\mathcal{I}^* = \{M \setminus I : I \in \mathcal{I}\}.$

$P(\mathcal{J})$	$\mathcal{J} = \operatorname{Fin}$	$\mathcal{J}=\mathrm{Fin}\times \emptyset$	$\mathcal{J} = \mathrm{Fin} \times \mathrm{Fin}$
Fin	?	?	?
$(\operatorname{Fin} \times \emptyset)(\mathcal{A})$?	?	?
$(\operatorname{Fin} \times \operatorname{Fin})(\mathcal{A})$?	?	?

Are there some general rules describing the relationships?

Denote by $\mathcal{I} \subseteq^{\uparrow} \mathcal{J}$ the condition $(\exists E \in \mathcal{I}^*) \mathcal{I} \upharpoonright E \subseteq \mathcal{J}$, where $\mathcal{I}^* = \{M \setminus I : I \in \mathcal{I}\}.$

• i.e. $(\exists \bar{I} \in \mathcal{I}) (\forall I \in \mathcal{I}) \ I \subseteq^{\mathcal{J}} \bar{I}.$

$P(\mathcal{J})$	$\mathcal{J} = \operatorname{Fin}$	$\mathcal{J}=\mathrm{Fin}\times \emptyset$	$\mathcal{J} = \mathrm{Fin} \times \mathrm{Fin}$
Fin	?	?	?
$(\operatorname{Fin} \times \emptyset)(\mathcal{A})$?	?	?
$(\operatorname{Fin} \times \operatorname{Fin})(\mathcal{A})$?	?	?

Are there some general rules describing the relationships?

Denote by $\mathcal{I} \subseteq^{\uparrow} \mathcal{J}$ the condition $(\exists E \in \mathcal{I}^*) \mathcal{I} \upharpoonright E \subseteq \mathcal{J}$, where $\mathcal{I}^* = \{M \setminus I : I \in \mathcal{I}\}.$

- i.e. $(\exists \bar{I} \in \mathcal{I}) (\forall I \in \mathcal{I}) \ I \subseteq^{\mathcal{J}} \bar{I}.$
- If $\mathcal{I} \subseteq^{\uparrow} \mathcal{J}$ then \mathcal{I} is a $P(\mathcal{J})$ -ideal. The converse is not true in general.

$P(\mathcal{J})$	$\mathcal{J} = \operatorname{Fin}$	$\mathcal{J}=\mathrm{Fin}\times \emptyset$	$\mathcal{J}=\mathrm{Fin}\times\mathrm{Fin}$
Fin	?	?	?
$(\operatorname{Fin} \times \emptyset)(\mathcal{A})$?	?	?
$(\operatorname{Fin} \times \operatorname{Fin})(\mathcal{A})$?	?	?

Are there some general rules describing the relationships?

Denote by $\mathcal{I} \subseteq^{\uparrow} \mathcal{J}$ the condition $(\exists E \in \mathcal{I}^*) \mathcal{I} \upharpoonright E \subseteq \mathcal{J}$, where $\mathcal{I}^* = \{M \setminus I : I \in \mathcal{I}\}.$

- i.e. $(\exists \bar{I} \in \mathcal{I}) (\forall I \in \mathcal{I}) \ I \subseteq^{\mathcal{J}} \bar{I}.$
- If $\mathcal{I} \subseteq^{\uparrow} \mathcal{J}$ then \mathcal{I} is a $P(\mathcal{J})$ -ideal. The converse is not true in general.
- note that $\mathcal{I} \subseteq^{\uparrow} \mathcal{J}$ is in fact equivalent to $cof(\mathcal{I})$ -P $(\mathcal{J}, \mathcal{I})$ -ideal using the notation from [5].

• If $\mathcal{I} \perp \mathcal{J}$ then $\mathcal{I} \subseteq^{\uparrow} \mathcal{J}$, hence \mathcal{I} is a $P(\mathcal{J})$ -ideal.

- If $\mathcal{I} \perp \mathcal{J}$ then $\mathcal{I} \subseteq^{\uparrow} \mathcal{J}$, hence \mathcal{I} is a $P(\mathcal{J})$ -ideal.
- Two distinct maximal ideals are orthogonal.

- If $\mathcal{I} \perp \mathcal{J}$ then $\mathcal{I} \subseteq^{\uparrow} \mathcal{J}$, hence \mathcal{I} is a $P(\mathcal{J})$ -ideal.
- Two distinct maximal ideals are orthogonal.
- For any pair of ideals $\mathcal{I}, \mathcal{J} \neq$ Fin there is an isomorphism f such that $f(\mathcal{I}) \perp \mathcal{J}$.

- If $\mathcal{I} \perp \mathcal{J}$ then $\mathcal{I} \subseteq^{\uparrow} \mathcal{J}$, hence \mathcal{I} is a $P(\mathcal{J})$ -ideal.
- Two distinct maximal ideals are orthogonal.
- For any pair of ideals $\mathcal{I}, \mathcal{J} \neq$ Fin there is an isomorphism f such that $f(\mathcal{I}) \perp \mathcal{J}$.
- None of the ideals $\operatorname{Fin}, \operatorname{Fin} \times \emptyset, \operatorname{Fin} \times \operatorname{Fin}$ are orthogonal.

Proposition

If there is an AD family C such that I is generated by C then the following statements are equivalent.

- 1) \mathcal{I} is a $P(\mathcal{J})$ -ideal.
- 2) $\mathcal{C} \setminus \mathcal{J}$ is finite.
- $3) \ \mathcal{I} \subseteq^{\restriction} \mathcal{J}.$

² \mathcal{I} is **nowhere tall**, if $(\forall A \in \mathcal{I}^+)(\exists B \in [A]^{\omega}) \mathcal{I} \upharpoonright B = [B]^{<\omega}$ (see e.g. [2]).

Proposition

If there is an AD family C such that I is generated by C then the following statements are equivalent.

- 1) \mathcal{I} is a $P(\mathcal{J})$ -ideal.
- 2) $\mathcal{C} \setminus \mathcal{J}$ is finite.
- $3) \ \mathcal{I} \subseteq^{\restriction} \mathcal{J}.$

If \mathcal{C} is MAD and \mathcal{J} is nowhere tall², then we can add

4) $\mathcal{I} \perp \mathcal{J}$.

² \mathcal{I} is nowhere tall, if $(\forall A \in \mathcal{I}^+)(\exists B \in [A]^{\omega}) \mathcal{I} \upharpoonright B = [B]^{<\omega}$ (see e.g. [2]).

Proposition

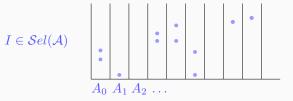
- 1) $(Fin \times \emptyset)(\mathcal{A})$ is a $P(\mathcal{J})$ -ideal.
- 2) $(Fin \times Fin)(\mathcal{A})$ is a $P(\mathcal{J})$ -ideal.
- 3) $\mathcal{A} \setminus \mathcal{J}$ is finite.
- 4) $(\operatorname{Fin} \times \emptyset)(\mathcal{A}) \subseteq^{\uparrow} \mathcal{J}.$

Critical ideals on $\omega \times \omega$

 $(\emptyset \times \operatorname{Fin})(\mathcal{A})$ – the family of all sets with finite intersection with each element of \mathcal{A} (P-ideal)

 $(\emptyset \times \operatorname{Fin})(\mathcal{A})$ – the family of all sets with finite intersection with each element of \mathcal{A} (P-ideal)

 $\mathcal{S}el(\mathcal{A})$ – the ideal generated by the family of all selectors of \mathcal{A}



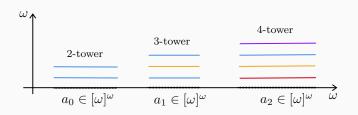
Let \mathcal{A} be an infinite partition of $\omega \times \omega$ to infinite sets. Set of partial functions g_0, \ldots, g_{k-1} is called a *k***-tower of monochromatic functions** (with respect to \mathcal{A}), if

- there are $A_{i_0}, \ldots, A_{i_{k-1}} \in \mathcal{A}$ such that $g_j \subseteq A_{i_j}$ for j < k,
- there is $a \in [\omega]^{\omega}$ such that $\operatorname{dom}(g_j) = a$ for each j < k,
- $g_i \cap g_j = \emptyset$ for $i, j < k, i \neq j$.

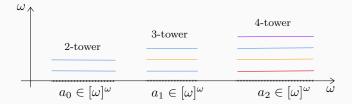
Let \mathcal{A} be an infinite partition of $\omega \times \omega$ to infinite sets. Set of partial functions g_0, \ldots, g_{k-1} is called a *k***-tower of monochromatic functions** (with respect to \mathcal{A}), if

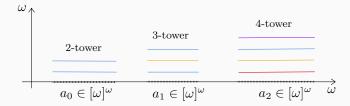
- there are $A_{i_0}, \ldots, A_{i_{k-1}} \in \mathcal{A}$ such that $g_j \subseteq A_{i_j}$ for j < k,
- there is $a \in [\omega]^{\omega}$ such that $\operatorname{dom}(g_j) = a$ for each j < k,

•
$$g_i \cap g_j = \emptyset$$
 for $i, j < k, i \neq j$.



Critical ideals on $\omega\times\omega$





Theorem

- 1) Sel is a $P((\emptyset \times Fin)(\mathcal{A}))$.
- 2) There is $k \in \omega$ s.t. there is no k-tower of monochromatic functions.
- 3) $Sel \subseteq^{\uparrow} (\emptyset \times Fin)(\mathcal{A}).$

Critical ideals on $\omega \times \omega_{\rm c}$

 $\boldsymbol{\mathcal{ED}}(\boldsymbol{\mathcal{A}}) - \mathrm{supremum \ of} \ \{(\mathrm{Fin} \times \emptyset)(\boldsymbol{\mathcal{A}}), \boldsymbol{\mathcal{S}}el(\boldsymbol{\mathcal{A}})\}$

Critical ideals on $\omega \times \omega$

$\boldsymbol{\mathcal{ED}}(\boldsymbol{\mathcal{A}}) - \mathrm{supremum of } \left\{ (\mathrm{Fin} \times \emptyset)(\boldsymbol{\mathcal{A}}), \boldsymbol{\mathcal{S}}el(\boldsymbol{\mathcal{A}}) \right\}$

Theorem

- 1) $\mathcal{ED}(\mathcal{A})$ is a $P(\emptyset \times Fin)$ -ideal.
- 2) $\mathcal{ED}(\mathcal{A}) \perp \emptyset \times \text{Fin.}$
- 3) $\mathcal{ED}(\mathcal{A}) \subseteq^{\uparrow} \emptyset \times \operatorname{Fin}.$

Critical ideals on $\omega \times \omega$

$\boldsymbol{\mathcal{ED}}(\boldsymbol{\mathcal{A}}) - \mathrm{supremum \ of} \ \{(\mathrm{Fin} \times \emptyset)(\boldsymbol{\mathcal{A}}), \boldsymbol{\mathcal{S}el}(\boldsymbol{\mathcal{A}})\}$

Theorem

The following statements are equivalent.

- 1) $\mathcal{ED}(\mathcal{A})$ is a $P(\emptyset \times Fin)$ -ideal.
- 2) $\mathcal{ED}(\mathcal{A}) \perp \emptyset \times \text{Fin.}$
- 3) $\mathcal{ED}(\mathcal{A}) \subseteq^{\uparrow} \emptyset \times \operatorname{Fin}.$

Theorem

- 1) $\mathcal{ED}(\mathcal{A})$ is a P(Fin $\times \emptyset$)-ideal.
- 2) $Sel(\mathcal{A})$ is a P(Fin $\times \emptyset$)-ideal.
- 3) $\mathcal{ED}(\mathcal{A}) \perp \operatorname{Fin} \times \emptyset$.
- 4) $\mathcal{ED}(\mathcal{A}) \subseteq^{\uparrow} \operatorname{Fin} \times \emptyset$.
- 5) $\mathcal{S}el(\mathcal{A}) \subseteq^{\uparrow} \operatorname{Fin} \times \emptyset.$

	Р	$\mathrm{P}(\emptyset\times\mathrm{Fin})$	$P(Fin \times \emptyset)$	$P(Fin \times Fin)$	$P(\mathcal{ED})$	P(Sel)
$\emptyset \times \mathrm{Fin}$	1	1	1	1	1	1
$\operatorname{Fin} \times \emptyset$	X	×	1	1	1	×
$\operatorname{Fin} \times \operatorname{Fin}$	X	×	1	1	1	×
$\mathcal{S}el$	X	1	×	1	1	1
\mathcal{ED}	X	×	×	1	1	×

	Р	$\mathrm{P}(\emptyset\times\mathrm{Fin})$	$\mathrm{P}(\mathrm{Fin}\times \emptyset)$	$\mathrm{P}(\mathrm{Fin}\times\mathrm{Fin})$	$P(\mathcal{ED})$	P(Sel)
$(\emptyset \times \operatorname{Fin})(\mathcal{A})$	1	1	1	1	1	1
$(\operatorname{Fin} \times \emptyset)(\mathcal{A})$	X	1⊇	1⊇	1⊇	⊆↑	1⊇
$(\operatorname{Fin}\times\operatorname{Fin})(\mathcal{A})$	X	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow
$\mathcal{S}el(\mathcal{A})$	X	1⊇	1⊇	?	?	?
$\mathcal{ED}(\mathcal{A})$	1	$\bot, \subseteq^{\uparrow}$	$\bot, \subseteq^{\uparrow}$?	?	?

- Filipów R. and Staniszewski M., On ideal equal convergence, Cent. Eur. J. Math. **12** (2014), 896–910.
- Filipów R. and Tryba J., Representation of ideal convergence as a union and intersection of matrix summability methods, J. Math. Anal. Appl 484 (2020), 123760.
- Hrušák M., Cardinal Invariants of Analytic P-Ideals, Canadian Journal of Mathematics 559(3) (2007), 575–595.
- Mačaj M. and Sleziak M., *I^K-convergence*, Real Anal. Exch. 36 (2010), 177–194.
- Staniszewski M., On ideal equal convergence II, J. Math. Anal. Appl 451 (2017), 1179–1197.

Thank you